Adhesion force studies of Janus nanoparticles.

نویسندگان

  • Li-Ping Xu
  • Sulolit Pradhan
  • Shaowei Chen
چکیده

Janus nanoparticles represent a unique nanoscale analogue to the conventional surfactant molecules, exhibiting hydrophobic characters on one side and hydrophilic characters on the other. Yet, direct visualization of the asymmetric surface structures of the particles remains a challenge. In this paper, we used a simple technique based on AFM adhesion force measurements to examine the two distinctly different hemispheres of the Janus particles at the molecular level. Experimentally, the Janus nanoparticles were prepared by ligand exchange reactions at the air-water interface. The particles were then immobilized onto a substrate surface with the particle orientation controlled by the chemical functionalization of the substrate surface, and an AFM adhesion force was employed to measure the interactions between the tip of a bare silicon probe and the Janus nanoparticles. It was found that when the hydrophilic side of the particles was exposed, the adhesion force was substantially greater than that with the hydrophobic side exposed, as the silicon probes typically exhibit hydrophilic properties. These studies provide further confirmation of the amphiphilic nature of the Janus nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the intermolecular Force-Induced Adhesion in Freestanding Nanostructures Made of Nano-beams

Among the intermolecular interactions, the Casimir and van der Waals forces are the most important forces that highly affect the behavior of nanostructures. This paper studies the effect of such forces on the adhesion of cantilever freestanding nanostructures. The nanostructures are made of a freestanding nano-beam which is suspended between two upper and lower conductive surfaces. The linear s...

متن کامل

Reversible and Precise Self-Assembly of Janus Metal-Organosilica Nanoparticles through a Linker-Free Approach.

Reversible self-assembly of nanoparticles into ordered structures is essential for both fundamental study and practical applications. Although extensive work has been conducted, the demand for simple, cheap, reversible, and versatile ordering methods is still a central issue in current nanoscience and nanotechnology. Here we report a reversible and precise self-assembly of nanoparticles through...

متن کامل

An imine-based approach to prepare amine-functionalized Janus gold nanoparticles.

An imine-based approach was developed to prepare Janus gold nanoparticles (Janus AuNPs) having amine functionality on one patch of the surface and a polyethylene glycol unit on the other. This unique technique features covalent bonding as the force to immobilize AuNPs on the template, enabling direct modification of AuNPs in both water and organic solvents. Colloidal clusters were then obtained...

متن کامل

Effect of silica particles on adhesion strength of polyvinyl chloride coatings on metal substrates

The aim of this study was to improve the adhesion performance of plasticized polyvinyl chloride (PVC) coatings on steel substrates by using nanoparticles. For this purpose, the PVC plastisol with different concentration of nano-silica was prepared and applied to bond steel joints. The adhesive strength of the joints was determined by single-lap shear test. Moreover, mechanical properties and mi...

متن کامل

The Janus Character of Heterogeneous Dendritic Nanoparticles

We present a computational and theoretical study of dendrimer-based nanoparticles composed of two linear chain types attached to the terminal groups of a core dendrimer. The chains were coupled to the dendritic core in both topologically Janus and alternating configurations. We find that a straightforward extension of the well-known scaling theory for the size of star polymers due toDaoud andCo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 23 16  شماره 

صفحات  -

تاریخ انتشار 2007